Package: sad (via r-universe)

October 16, 2024

Title Verify the Scale, Anisotropy and Direction of Weather Forecasts **Version** 0.1.3

Description Implementation of the wavelet-based spatial verification method of Buschow and Friederichs ``SAD: Verifying the Scale, Anisotropy and Direction of precipitation forecasts" (2020, submitted to QJRMS). Forecasts and Observations are transformed by a decimated or redundant dual-tree complex wavelet transform to analyze the spatial scale, degree of anisotropy and preferred direction in each field. These structural attributes are compared by a series of scores. An experimental algorithm for the correction of these errors is included as well.

License MIT + file LICENSE
Imports emdist
Depends dualtrees
Encoding UTF-8
LazyData false
RoxygenNote 6.1.1
NeedsCompilation no
Author Sebastian Buschow [aut, cre] (https://orcid.org/0000-0003-4750-361X)
Maintainer Sebastian Buschow <s6sebusc@uni-bonn.de></s6sebusc@uni-bonn.de>
Date/Publication 2020-11-06 16:30:02 UTC
Repository https://s6sebusc.r-universe.dev
RemoteUrl https://github.com/cran/sad
RemoteRef HEAD
RemoteSha 295a81f0899530fdad6cbbb549548b32b1df6102

																						_	ï
getpareto																						- 2	J

2 getpareto

hemd																					
prepare_sad																					
raincols																					
rrain																					
sadcorrect .																					
sadforecast																					
sadverif																					
semd																					

Index 10

getpareto

Find the pareto set

Description

Determine the set of pareto optimal forecasts in a matrix of scores

Usage

getpareto(scores)

Arguments

scores

a matrix of negatively oriented scores where the rows correspond to different forecasts and the columns denote different scores.

Details

The Pareto set contains all those forecasts for which no other forecast is better in every respect. In this function, we assume that all scores are negatively oriented, "better" therefore means lower values.

Value

a vector of indices indicating all members of the pareto set.

Note

This function becomes very memory hungry if you have more than 1000 forecasts, be careful.

hemd 3

hemd histogram emd

Description

Earth Mover's Distance between two histograms, given as vectors

Usage

```
hemd(h1, h2, mids = NULL)
```

Arguments

h1, h2 vectors of non-negtaive numbers representing two histograms
mids the bin mids corresponding to the histograms. Can also be given via the names

of h1.

Value

the value of the EMD

prepare_sad prepare a sad forecast for verification	
---	--

Description

remove small values, apply log-transform, smooth borders, handle boundary conditions

Usage

```
prepare_sad(x, xmin = 0.1, log = TRUE, rsm = 0, Nx = NULL,
   Ny = NULL, boundaries = "pad")
```

Arguments

X	a list of 2 or more 2D matrices with equal sizes and no missing or inifinite values, as required by as . sadforecast $ \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2$
xmin	values smaller than xmin are set to zero
log	logical, do you want to log-transfrom the data? (recommended for precipitation)
rsm	number of pixels which are linearly smoothed at the edge
Nx	size to which the data is extended in x-direction
Ny	size to which the data is extended in y-direction
boundaries	how to handle the boundary conditions, either "pad", "mirror" or "periodic"

4 rrain

Details

the positions within the extended field where the original field resides are output as attributes "px", "py" of the result. The other input parameters are saved as attributes of the result as well.

Value

an object of class sadforecast which has been prepared in the desired way.

Examples

```
data( rrain )
ra <- list( rrain[2,4,,], rrain[3,9,,] )
ra <- prepare_sad( ra, rsm=0, Nx=256, boundaries="mirror", log=FALSE )
plot(ra)</pre>
```

raincols

rain color scale

Description

eight shades of blue used in plot. sadforecast

Usage

raincols

Format

An object of class character of length 8.

rrain

Random Rain

Description

Randomly simulated synthetic rain fields with Matern covariances

Usage

```
data(rrain)
```

Format

A 4x10x128x128 matrix

sadcorrect 5

Details

These fields were used in Buschow et al. (2019) <doi:10.5194/gmd-12-3401-2019>. The first array corresponds to the four model configurations from that paper (different roughness nu and scale sc), the second dimension contains ten realizations for each model.

Source

simulated using the 'RandomFields' package, code available at <10.5281/zenodo.3257511>

Examples

```
data(rrain)
```

sad	cor	rect

correct structure errors

Description

use the inverse 'dtcwt' to correct errors in scale, anisotropy and direction

Usage

```
sadcorrect(x, xmin = 0.1, log = TRUE, rsm = 0, Nx = NULL,
   Ny = NULL, J = NULL, boundaries = "pad", direction = TRUE)
```

Arguments

Χ	a list of equally sized matrices, the first element is assumed to be the observation
xmin	values smaller than xmin are set to zero
log	logical, do you want to log-transfrom the data? (recommended for precipitation)
rsm	number of pixels which are linearly smoothed at the edge
Nx	size to which the data is extended in x-direction, has to be a whole power of 2
Ny	size to which the data is extended in y-direction, has to be a whole power of 2
J	largest scale considered
boundaries	how to handle the boundary conditions, either "pad", "mirror" or "periodic"
direction	if TRUE, scale and direction are corrected, otherwise only scale

Details

The algorithm performs the following steps:

- 1. remove values below xmin
- 2. if log=TRUE log-transform all fields
- 3. set all fields to zero mean, unit variance

6 sadforecast

- 4. apply dtcwt to all fields
- 5. loop over forecasts and scales. If direction=TRUE loop over the six directions. Multiply forecast energy at each location by the ratio of total observed energy to total forecast energy at that scale (and possibly direction)
- 6. apply idtcwt to all forecasts
- 7. reset means and variance of the forecasts to their original values
- 8. if log=TRUE invert the log-transform
- 9. return the list of corrected fields

Value

an object of class sadforecast

Examples

```
data(rrain)
ra <- as.sadforecast( list( rrain[2,1,,], rrain[3,1,,], rrain[3,2,,], rrain[3,3,,] ) )
ra_c <- sadcorrect( ra, rsm=10 )
plot(ra_c)</pre>
```

sadforecast

class for a list of forecasts

Description

check that a list of forecasts fulfills all requirements to be verified by our method

Usage

```
as.sadforecast(x)
## S3 method for class 'sadforecast'
plot(x, mfrow = NULL, col = NULL, ...)
```

Arguments

Χ	a list of 2 or more 2D matrices with equal sizes and no missing or infinite values
mfrow	vector with the number of rows and columns you would like in the plot
col	color scale for the plot
	further arguments passed to image

Details

as.sadforecast does nothing except check that everything is as it should be, add the attributes that can be changed by prepare_sad and provide a method for quick plots of the data.

sadverif 7

Value

an object of class sadforecast

Examples

```
data( rrain )
ra <- list( rrain[1,1,,], rrain[4,5,,], rrain[2,7,,] )
ra <- as.sadforecast(ra)
plot(ra)</pre>
```

sadverif

dual-tree verification

Description

verify the scale, anisotropy and direction of a number of forecasts

Usage

```
sadverif(x, dec = TRUE, xmin = 0.1, log = TRUE, a = 1, nbr = 33,
    rsm = 0, Nx = NULL, Ny = NULL, J = NULL, boundaries = "pad",
    return_specs = FALSE)

## S3 method for class 'sadverif'
plot(x, ...)

## S3 method for class 'sadverif'
summary(object, ...)
```

Arguments

Χ	a list of equally sized matrices, the first element is assumed to be the observation
dec	logical, do you want to use the decimated transform
xmin	values smaller than xmin are set to zero
log	logical, do you want to log-transfrom the data? (recommended for precipitation)
а	relative weight of directional errors compared to scale errors in semdd
nbr	number of breaks for the scale histograms, has no effect if dec=TRUE
rsm	number of pixels which are linearly smoothed at the edge
Nx	size to which the data is extended in x-direction
Ny	size to which the data is extended in y-direction
J	largest scale considered
boundaries	how to handle the boundary conditions, either "pad", "mirror" or "periodic"
return_specs	if TRUE, the spatial mean spectra are returned as well
	further arguments, currently ignored.
object	object of class sadverif

8 semd

Details

each element of x is transformed via dtcwt from the 'dualtrees' package. Scores and centres based on the mean spectra are calculated. If dec=FALSE, scale histograms and the corresponding score hemd are calculated as well.

Value

an object of class sadverif, containing the following elements

settings a dataframe containing the parameters that were originally passed to dtverif

centres a matrix cotaining the anisotropy rho, angle phi and central scale z derived from the mean spectra. Rain area and sum are included as well.

detscores a matrix containing the differences in centre components, the direction/anisotropy score dxy, the emd between direction-averaged spectra (semd) and the emd between the directional spectra (semdd). If dec=FALSE, the emd between the scale histograms, hemd, is included as well.

time the time the calculation took in seconds

if there is more than one forecast, the ensemble scores SpEn and (if available), hemd are computed as well, treating all forecasts as members of the ensemble to be verified.

References

Selesnick, I.W., R.G. Baraniuk, and N.C. Kingsbury (2005) <doi:10.1109/MSP.2005.1550194> Buschow et al. (2019) <doi:10.5194/gmd-12-3401-2019> Buschow and Friederichs (2020) <doi:10.5194/ascmo-6-13-2020>

Examples

```
oldpar <- par(no.readonly=TRUE)
on.exit(par(oldpar))
data(rrain)
ra <- as.sadforecast( list( rrain[1,1,,], rrain[1,2,,], rrain[2,1,,], rrain[3,1,,] ) )
plot(ra)
verif <- sadverif( ra, log=FALSE, xmin=0 )
summary(verif)
par( mfrow=c(2,2) )
plot( verif )</pre>
```

semd

spectral emd

Description

earth mover's distance between dual-tree wavelet spectra

semd 9

Usage

```
semd(dt1, dt2, a = 1, dir = TRUE)
```

Arguments

dt1, dt2	forecast and observed spectrum
а	ratio between scale- and directional component
dir	whether or not to include direction information

Value

a single value, the emd. If dir=FALSE, the value is signed, indicating the direction of the scale error.

Index

```
* datasets
    raincols, 4
    rrain, 4
as. sadforecast (sadforecast), 6
getpareto, 2
hemd, 3
plot.sadforecast(sadforecast), 6
plot.sadverif(sadverif), 7
prepare_sad, 3
raincols, 4
rrain, 4
sadcorrect, 5
sadforecast, 6
sadverif, 7
semd, 8
summary.sadverif(sadverif), 7
```